Non-stationary resonance dynamics of the harmonically forced pendulum

نویسندگان

  • Leonid I. Manevitch
  • Valeri V. Smirnov
  • Francesco Romeo
چکیده

The stationary and highly non-stationary resonant dynamics of the harmonically forced pendulum are described in the framework of a semi-inverse procedure combined with the Limiting Phase Trajectory concept. This procedure, implying only existence of slow time scale, permits to avoid any restriction on the oscillation amplitudes. The main results relating to the dynamical bifurcation thresholds are represented in a closed form. The small parameter defining the separation of the time scales is naturally identified in the analytical procedure. Considering the pendulum frequency as the control parameter we reveal two qualitative transitions. One of them corresponding to stationary instability with formation of two additional stationary states, the other, associated with the most intense energy drawing from the source, at which the amplitude of pendulum oscillations abruptly grows. Analytical predictions of both bifurcations are verified by numerical integration of original equation. It is also shown that occurrence of chaotic domains may be strongly connected with the second transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the nonlinear axial vibrations of a cantilevered pipe conveying pulsating two-phase flow

The parametric resonance of the axial vibrations of a cantilever pipe conveying harmonically perturbed two-phase flow is investigated using the method of multiple scale perturbation. The nonlinear coupled and uncoupled planar dynamics of the pipe are examined for a scenario when the axial vibration is parametrically excited by the pulsating frequencies of the two phases conveyed by the pipe. Aw...

متن کامل

Identification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response

In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...

متن کامل

Experimental Study of Nonlinear Resonances and Anti - resonances in a Forced , Ordered Granular Chain

We experimentally study a one-dimensional uncompressed granular chain composed of a finite number of identical spherical beads with Hertzian interactions. The chain is harmonically excited by an amplitudeand frequency-dependent boundary drive at its left end and has a fixed boundary at its right end. Such ordered granular media represent an interesting new class of nonlinear acoustic metamateri...

متن کامل

Torsion Spring Oscillator with Dry Friction

Free and forced oscillations of a torsion spring pendulum damped by viscous and dry (Coulomb) friction are investigated analytically and with the help of computer simulations. An idealized mathematical model of dry friction described by the so-called z-characteristic is assumed. This simple physical model can explain many peculiarities in behavior of various oscillatory systems with dry frictio...

متن کامل

Complicated Regular and Chaotic Motions of the Parametrically Excited Pendulum

Several new types of regular and chaotic behavior of the parametrically driven pendulum are discovered with the help of computer simulations. A simple physical explanation is suggested to the phenomenon of subharmonic resonances. The boundaries of these resonances in the parameter space and the spectral composition of corresponding stationary oscillations are determined theoretically and verifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016